Finite-element semi- discretization of linearized compressible and resistive MHD
نویسندگان
چکیده
منابع مشابه
Block Preconditioners for Stable Mixed Nodal and Edge finite element Representations of Incompressible Resistive MHD
The scalable iterative solution of strongly coupled three-dimensional incompressible resistive magnetohydrodynamics (MHD) equations is very challenging because disparate time scales arise from the electromagnetics, the hydrodynamics, as well as the coupling between these systems. This study considers a mixed finite element discretization of a dual saddle point formulation of the incompressible ...
متن کاملA discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids
Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The well-defined incompressible limit relies on using pressure primitive or entropy variables. In part...
متن کاملHigh Order Finite Element Discretization of the Compressible Euler and Navier-Stokes Equations
We present a high order accurate streamline-upwind/Petrov-Galerkin (SUPG) algorithm for the solution of the compressible Euler and Navier-Stokes equations. The ow equations are written in terms of entropy variables which result in symmetric ux Jacobian matrices and a dimensionally consistent Finite Element discretization. We show that solutions derived from quadratic element approximation are o...
متن کاملFinite-element discretization of a linearized 2−D model for lubricated oil transportation
We discretize in space the equations obtained at each time step when discretising in time a Navier-Stokes system modelling the 2 − D flow in a horizontal pipe of two immiscible fluids with comparable densities, but very different viscosities. At each time step the system reduces to a Stokes-like problem with non-standard conditions at the boundary and at the interface between the two fluids. We...
متن کاملFinite element discretization of a thermoelastic beam
We consider the steady case of a nonlinear model for a thermoelastic beam that can enter in contact with obstacles. We first prove the well-posedness of this problem. Next, we propose a finite element discretization and perform the a priori and a posteriori analysis of the discrete problem. Some numerical experiments confirm the interest of this approach. Résumé: Nous considérons le cas station...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 1986
ISSN: 0021-9991
DOI: 10.1016/0021-9991(86)90070-7